Multi-modal human aggression detection
نویسندگان
چکیده
This paper presents a smart surveillance system named CASSANDRA, aimed at detecting instances of aggressive human behavior in public environments. A distinguishing aspect of CASSANDRA is the exploitation of complementary audio and video cues to disambiguate scene activity in real-life environments. From the video side, the system uses overlapping cameras to track persons in 3D and to extract features regarding the limb motion relative to the torso. From the audio side, it classifies instances of speech, screaming, singing, and kicking-object. The audio and video cues are fused with contextual cues (interaction, auxiliary objects); a Dynamic Bayesian Network (DBN) produces an estimate of the ambient aggression level. Our prototype system is validated on a realistic set of scenarios performed by professional actors at an actual train station to ensure a realistic audio and video noise setting. © 2015 Elsevier Inc. All rights reserved.
منابع مشابه
Damage detection of multi-girder bridge superstructure based on the modal strain approaches
The research described in this paper focuses on the application of modal strain techniques on a multi-girder bridge superstructure with the objectives of identifying the presence of damage and detecting false damage diagnosis for such structures. The case study is a one-third scale model of a slab-on-girder composite bridge superstructure, comprised of a steel-free concrete deck with FRP rebars...
متن کاملMulti-modal Person Detection and Tracking from a Mobile Robot in a Crowded Environment
This paper addresses multi-modal person detection and tracking using a 2D SICK Laser Range Finder and a visual camera from a mobile robot in a crowded and cluttered environment. A sequential approach in which the laser data is segmented to filter human leg like structures to generate person hypothesis which are further refined by a state of the art parts based visual person detector for final d...
متن کاملJanus - Multi Source Event Detection and Collection System for Effective Surveillance of Criminal Activity 2 Janus - Multi Source Event Detection and Collection System for Effective Surveillance of Criminal Activity
Recent technological advances provide the opportunity to use large amounts of multimedia data from a multitude of sensors with different modalities (e.g., video, text) for the detection and characterization of criminal activity. Their integration can compensate for sensor and modality deficiencies by using data from other available sensors and modalities. However, building such an integrated sy...
متن کاملWeakly-supervised DCNN for RGB-D Object Recognition in Real-World Applications Which Lack Large-scale Annotated Training Data
This paper addresses the problem of RGBD object recognition in real-world applications, where large amounts of annotated training data are typically unavailable. To overcome this problem, we propose a novel, weakly-supervised learning architecture (DCNN-GPC) which combines parametric models (a pair of Deep Convolutional Neural Networks (DCNN) for RGB and D modalities) with non-parametric models...
متن کاملAutomatic multi-modal intelligent seizure acquisition (MISA) system for detection of motor seizures from electromyographic data and motion data
The objective is to develop a non-invasive automatic method for detection of epileptic seizures with motor manifestations. Ten healthy subjects who simulated seizures and one patient participated in the study. Surface electromyography (sEMG) and motion sensor features were extracted as energy measures of reconstructed sub-bands from the discrete wavelet transformation (DWT) and the wavelet pack...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computer Vision and Image Understanding
دوره 144 شماره
صفحات -
تاریخ انتشار 2016